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1 Mechanism reduction via reaction selection
In this section, we propose a data-driven sparse-learning approach towards identifying a reduced
set of reactions, which approximately replicates the behavior of the detailed mechanism.

For each of Nr reactions, we introduce a binary selection variable wi,t ∈ {0, 1} to encode
whether or not the ith reaction is selected at time t. If reaction i is chosen for the reduced mech-
anism at time t, then wi,t = 1; otherwise, wi,t = 0. With the aid of the selection variables
wt = [w1,t,w2,t, . . . ,wNr,t]

ᵀ, we formally state the problem of mechanism reduction.
Given the measurements of species concentrations Xt and reaction rates rt at all times, deter-

mine the smallest subset of reactions (in terms of w) such that the estimation error induced by the
reduced mechanism remains in a user-specified tolerance range (ε) at all time instances.

1.1 Sparse-Learning Mechanism Reduction (SLMR)
Let us first define the error induced by the reduced mechanism characterized by wt at time t on
molar concentration of ith species as follows:

Ei,t(wt) = |Xt+1(i)−Xt(i)−Mi(wt � rt)∆t|, (1)

where Mi denotes the ith row of matrix M and � denotes the element-wise product.

Error tolerance on individual concentrations We can enforce constraints on the error in the
change of individual species concentrations for all time instances, i.e.,

Ei,t(wt) ≤ εNt(i), ∀t, ∀i ∈ {1, . . . , Ns}, (2)

where Nt is the normalization factor at time t, which is defined to be the summation of absolute
changes of all concentrations at time t as described in Eq. (3), and ε is a tuning parameter that
indicates the error tolerance that is acceptable in terms of the percentage of Nt, i.e., ε = 0.05
indicates 5% error tolerance.
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Nt(i) = |Mi|rt∆t, i ∈ {1, . . . , Ns}. (3)

Constraint Eq. (4) is added to avoid the propagation of error through time. The size of time
horizon can be chosen based on the speed of changes in concentrations. We indicate such time
horizon with H . For the concentration change of each species i in time horizon [t, t+H − 1], we
have that

|Xt+H−1(i)−Xt(i)−
t+H−2∑
k=t

Miwk � rk∆k| ≤ βε
t+H−2∑
k=t

Nk(i), (4)

where β is a tuning parameter that indicates the tightness of the bound on propagated error, and
t = 0, H, 2H, . . ..

At each time instance t, we seek the minimum number of reactions that are required to be
added to the previously selected reactions up to time t such that Eq. (2) and Eq. (4) are satisfied,
i.e.,

wt+1 ≥ wt. (5)

Now that the constraints that we consider for the optimization problem are described, we can
formulate our data-driven sparse-learning mechanism reduction approach. For each time batch of
size H , we solve the following mixed-integer linear programming problem:

{w∗k}t+H−1
k=t = minimize

{wk}t+H−1
k=t

t+H−1∑
k=t

Nr∑
i=1

wi,k (PSLMR)

subject to wi,k ∈ {0, 1}, i = 1, 2, ..., Nr,

∀k ∈ {t, t+ 1, . . . , t+H − 1}
Eqs. (2),(4),(5) hold.

where {wk}t+H−1
k=t are the optimization variables. Note that solving problem (PSLMR) delivers the

minimum number of reactions that are required to be added to the previously selected reactions,
i.e., incremental reaction inclusion Eq. (5) such that the error tolerance constraint on individual
concentrations Eq. (2) and error propagation Eq. (4) are satisfied. The objective function minimizes
the total number of selected reactions in the time horizon [t, t+H − 1].

In order to have a global reduced mechanism that mimics the dynamical behavior of full mech-
anism, we need to use data from simulations over a sparse set of initial conditions that encompass
the whole range of temperature T , equivalence ratio φ and pressure p. We refer to each initial
condition as a point in the parameter space, namely θ = [T, φ, p].

The next step is to find the reduced mechanism not just for the time horizon [t, t+H − 1], but
for the entire simulation time [0, tf ], where tf is the time that simulation ends. In order to do this,
we solve problem (PSLMR) for time intervals [0, H − 1], [H, 2H − 1], ..., [KH, tf ], where KH is
the largest integer multiple of H that is smaller or equal to tf , as described in Algorithm 1.

Global mechanism Assume that data is available for a sparse set of initial conditions that is
denoted by Θ. In order to obtain a global reduced mechanism we calculate the set union of all

2



Algorithm 1 Calculating w(θ)

Input: {Xt}
tf
t=0, {rt}

tf
t=0, {∆t}

tf
t=1, ε, β, θ = [φ, T, p].

Initialize: t = 0, w−1 = 0.

1. While (t ≤ tf )

• W = min{H, tf − t+ 1}
• set the time horizon to [t, t+W − 1].
• solve problem (PSLMR) to obtain w∗t+W−1

• t+W → t.
• wt−1 = w∗t−1.

End while
2. Return w∗tf as w(θ).

selected reactions for all the conditions in Θ. In other words:

w∗ =
⋃
θ∈Θ

R(w(θ)), (6)

where R(w(θ)) denotes the set of reactions corresponding to the output of Algorithm 1 for initial
condition θ.

1.2 Computational Complexity
Problem (PSLMR) is a standard mixed-integer linear programming (MILP) problem, and thus can
be efficiently solved using state-of-the-art MILP solvers such as Gurobi [1] and CPLEX [2]. Even
though these solvers can solve problems with large number of integer variables in a relatively fast
manner by employing advanced branch and bounding algorithms, the worst-case complexity of
MILP is exponential. In order to further reduce the complexity of our data-driven sparse-learning
approach, we can utilize convex relaxation methods [3] by replacing the Boolean variable con-
straint with its convex compartment 0 ≤ wi,t ≤ 1 for all i. The latter yields a linear programming
problem, which can be solved efficiently in polynomial time, and therefore makes our approach
promising for extremely large-scale chemical reaction networks at the cost of losing optimality
guarantees.

2 Application
We applied the reduction algorithm presented in the previous section to the chemical mechanism
of H2 oxidation by Hong et al. [4]. We selected this mechanism for two reasons: first is a very
small mechanism that is suitable for testing of different approaches and as such optimal to develop
new methodologies; second, due to the small number of reactions and species, is very difficult to
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reduce without affecting its accuracy. We want to stress, however, that the mechanism reduction
of H2 is intended to show the algorithm capabilities and not a real world application.

We first performed 48 simulations using the full mechanism in a H2/air 0-D homogeneous
reactor for thermodynamic regimes that relevant to practical combustion devices by using using
Chemkin [5]. The species concentrations and reaction rates generated for initial conditions encom-
passing 5− 20 atm, 800− 1100 K, and equivalence ratios between 0.5− 2 were used to generate
the reduced mechanism. We first fix the time horizon for error propagation to be at H = 10.
Then, by setting the tuning parameters β to 100 and ε, i.e., the upper bound on the fitting error
tolerance, to 0.02, 0.05, and 0.1 results in three reduced mechanisms with 47, 40 and 37 reactions
(forward and reverse counted separately). Compared to the full mechanism, which includes 58
reactions excluding the reactions associated with Ar, that is a reduction of about 19%, 31%, and
36%, respectively.

Figure 1 shows, in the form of a directed bipartite graph, the comparison between the full
mechanism and the 37-reactions reduced mechanism. In this representation, species are connected
to the reactions in which they appear as reactants by red dashed lines, while reactions are connected
to their products by blue dotted lines. Finally, gray lines show the reactions that were removed by
the mechanism reduction.

To test the quality of the reduced mechanisms, we compared calculated ignition characteristics
and the time evolutions of species concentrations in a range of conditions slightly wider than the
one used to generate them (i.e., 5 − 20 atm, 700 − 1300 K, equivalence ratio of 0.5 − 2) for
the same homogeneous reactor. Figure 2 shows the ignition delay times, relative deviations in
ignition delay time from the full mechanism, and maximum temperature increase at 10 atm, and
equivalence ratios of 0.5 and 1. All three reduced mechanisms are in excellent agreement with the
full mechanism, with, as expected, larger reduced mechanisms showing better agreements. The
relative deviation in the ignition delay times are, however, even in the worst case scenario within
1% under all the tested conditions. Also the maximum temperature increase (bottom panels of
Fig. 2) is well-maintained in the reduced mechanisms. This agreements are not limited to 10 atm
and φ =0.5 and 1, as very similar observations can be made in all the condition tested (not shown).

Figure 3 shows the time evolutions of selected species for the simulations at 1000 K, 10 atm,
equivalence ratios of 0.5 and 1. All reduced mechanisms generated very similar H2O and H profiles
throughout the whole ignition event compared to those from the full mechanism. However, OH
profiles show that the correct concentrations after ignition is not completely matched by the 40-
and 37-reactions mechanism. Considering the small size of the full mechanism this is not entirely
unexpected and is exacerbated by the equilibrium reached in the concentrations after ignition.
Overall, however, the above comparisons show that the reduced mechanisms generated by our
new reduction approach are effective in reproducing key combustion properties such as ignition
characteristics and heat release, as well as species profiles during pre-ignition and ignition.

3 Conclusions
In this work, we present a new method to reduce chemical reaction network by employing data-
driven sparse learning approach to obtain a reduced mechanism that is valid for all process condi-
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Figure 1: The directed bipartite graph for the reduced mechanism with 37 reactions (ε = 0.1).
Red dashed lines indicate the edges from species to reactions, blue dotted lines represent the edges
from reactions to species, and light grey solid lines show the removed edges from the detailed
mechanism.

tions (temperature, pressure and equivalence ration) and all ranges of species molar concentrations.
In addition, our method incorporates a user-specified bound on the propagation of error cause by
eliminating reactions. That is, the proposed approach ensures that the discrepancy between the
original and the reduced mechanisms remains in the user-specified acceptable range in all time
instances and in all time horizons of specified length. The reduction is performed without in-
troducing any bias towards specific properties or species therefore providing a mechanism with
optimal performance, which is independent of the chemical reaction network that is being consid-
ered. Finally, the approach has a low computational cost and scales gracefully with the size of the
full mechanism, making it a viable option for the reduction of large mechanisms.
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Figure 2: Computed ignition delay times (top), percent deviations in ignition delay from the full
mechanism (middle), and maximum temperature increase (bottom) for 10 atm, equivalence ratios
of 0.5 and 1 cases.

The performance of the method is evaluated on a H2 mechanism, which due to its small initial
size was expected to be difficult to reduce. Surprisingly, however, our method was able to reduced
the number of reactions by more than one third without any notable discrepancy in ignition delay
or heat release.
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